Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Cerium(III) dihydroxidohexaoxidotetraborate chloride

Wei Sun, Biao-Chun Zhao, Ya-Xi Huang and Jin-Xiao Mi*
Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005, Fujian Province, People's Republic of China Correspondence e-mail: jxmi@xmu.edu.cn

Received 6 December 2011; accepted 23 January 2012

Key indicators: single-crystal X-ray study; $T=295 \mathrm{~K}$; mean $\sigma(\mathrm{B}-\mathrm{O})=0.007 \mathrm{~A}$; R factor $=0.020 ; w R$ factor $=0.051$; data-to-parameter ratio $=11.4$.

The crystal structure of the title compound, $\mathrm{Ce}\left[\mathrm{B}_{4} \mathrm{O}_{6}(\mathrm{OH})_{2}\right]$ Cl , is built from polyborate sheets parallel to the (001) plane. These sheets stack along the [001] direction and are linked by Ce atoms exhibiting an $\mathrm{CeO}_{8} \mathrm{Cl}_{2}$ coordination sphere. $\mathrm{O}-$ $\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds additionally stabilize the structural set-up. The polyborate sheet is made up of zigzag borate chains running along the [110] direction. These zigzag chains are interconnected by shared O-vertices, resulting in a two-dimensional layer with nine-membered rings. All B and O atoms (except for the terminal OH atoms) lie in the nearly planar sheets of polyborates, leading to their isotropic atomic displacement parameters being significantly smaller than usual. This may be attributed to the fact that the atomic displacement parameters correlate not only with their atomic masses but with their coordination environments also.

Related literature

For background to borate compounds and their applications, see: Burns et al. (1995); Chen et al. (1985); Zhao et al. (1990); Sun, Sun et al. (2010); Sun, Zhou et al. (2010). For isotypic structures, see: Belokoneva et al. (2002) for $\operatorname{Ln}\left[\mathrm{B}_{4} \mathrm{O}_{6}(\mathrm{OH})_{2}\right] \mathrm{Cl}$ ($L n=\operatorname{Pr}, \mathrm{Nd}$).

Experimental

Crystal data

$\mathrm{Ce}\left[\mathrm{B}_{4} \mathrm{O}_{6}(\mathrm{OH})_{2}\right] \mathrm{Cl}$
$M_{r}=348.83$
Monoclinic, Cc
$a=6.5169$ (11) \AA $b=11.245(2) \AA$
$c=9.7575$ (17) \AA
$\beta=105.284$ (3) ${ }^{\circ}$
$V=689.8(2) \AA^{3}$
$Z=4$
Mo $K \alpha$ radiation
$\mu=7.00 \mathrm{~mm}^{-1}$
$T=295 \mathrm{~K}$
$0.16 \times 0.07 \times 0.03 \mathrm{~mm}$

Data collection

Bruker SMART APEX CCD areadetector diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2001)
$T_{\text {min }}=0.401, T_{\text {max }}=0.818$

2825 measured reflections 1532 independent reflections 1523 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.022$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.020$
All H -atom parameters refined
$w R\left(F^{2}\right)=0.051$
$\Delta \rho_{\text {max }}=0.53$ e \AA^{-3}
$S=1.00$
$\Delta \rho_{\text {min }}=-1.64$ e \AA^{-3}
1532 reflections
134 parameters
10 restraints

Absolute structure: Flack (1983),
716 Friedel pairs
Flack parameter: 0.034 (19)

Table 1
Hydrogen-bond geometry ($\mathrm{A}^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	D-H	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 8-\mathrm{H} 1 \cdots \mathrm{O} 1^{\text {i }}$	0.82 (2)	2.43 (7)	2.859 (5)	114 (6)
$\mathrm{O} 8-\mathrm{H} 1 \cdots \mathrm{Cl} 1^{\text {ii }}$	0.82 (2)	2.52 (5)	3.219 (4)	145 (7)
$\mathrm{O} 7-\mathrm{H} 2 \cdots \mathrm{O} 4^{\text {ii }}$	0.83 (2)	2.13 (6)	2.860 (6)	148 (10)
$\mathrm{O} 7-\mathrm{H} 2 \cdots \mathrm{Cl} 1^{\text {ii }}$	0.83 (2)	2.81 (11)	3.220 (4)	112 (9)

Symmetry codes: (i) $x,-y+1, z+\frac{1}{2}$; (ii) $x+\frac{1}{2},-y+\frac{3}{2}, z+\frac{1}{2}$.

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2011) and ATOMS (Dowty, 2004); software used to prepare material for publication: SHELXL97.

This work was supported by the National Natural Science Foundation of China (grant No. 40972035), the Natural Science Foundation of Fujian Province of China (grant No. 2010 J01308) and the Scientific and Technological Innovation Platform of Fujian Province (grant No. 2009 J1009).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2495).

References

Belokoneva, E. L., Stefanovich, S. Yu., Dimitrova, O. V. \& Ivanova, A. G. (2002). Zh. Neorg. Khim. 47, 370-377.

Brandenburg, K. (2011). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Bruker (2001). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Burns, P. C., Grice, J. D. \& Hawthorne, F. C. (1995). Can. Mineral. 33, 11311151.

Chen, C. T., Wu, B. C., Jiang, A. D. \& You, G. M. (1985). Sci. Sin. B, 15, 235243
Dowty, E. (2004). ATOMS. Shape Software, Kingsport, Tennessee, USA.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122
Sun, H. Y., Sun, W., Huang, Y. X. \& Mi, J. X. (2010). Z. Anorg. Allg. Chem. 636, 977-981.
Sun, H. Y., Zhou, Y., Huang, Y. X., Sun, W. \& Mi, J. X. (2010). Chin. J. Struct. Chem. 29, 1387-1393
Zhao, S. Q., Huang, C. E. \& Zhang, H. W. (1990). J. Cryst. Growth, 99, 805-810.

supplementary materials

Acta Cryst. (2012). E68, i17 [doi:10.1107/S1600536812002875]
Cerium(III) dihydroxidohexaoxidotetraborate chloride

W. Sun, B.-C. Zhao, Y.-X. Huang and J.-X. Mi

Comment

Borate compounds have been extensively studied due to their variety of fundamental building blocks and crystal structure types (Burns et al., 1995), as well as their successful industry applications as nonlinear optical materials, e.g. $\beta-\mathrm{Ba}\left(\mathrm{B}_{2} \mathrm{O}_{4}\right)$ (BBO) (Chen et al., 1985) and $\mathrm{LiB}_{3} \mathrm{O}_{5}(\mathrm{LBO})$ (Zhao et al., 1990). Besides alkali metals and alkaline-earth metals (Sun, Sun et al., 2010), rare-earth elements become highlighted with being introduced into the borate system in order to obtain multifunctional materials with the distinctive luminescence properties of rare-earth elements. Belokoneva et al. (2002) claimed that $\operatorname{Ln}\left(\mathrm{B}_{4} \mathrm{O}_{6}(\mathrm{OH})_{2}\right) \mathrm{Cl}(\operatorname{Ln}=\mathrm{Pr}, \mathrm{Nd})$ exhibits excellent nonlinear optical properties. But the atomic coordinates of its cerium analogue have not been reported until now. Herein, we report the crystal structure of $\mathrm{Ce}\left(\mathrm{B}_{4} \mathrm{O}_{6}(\mathrm{OH})_{2}\right) \mathrm{Cl}$ determined from single-crystal X-ray diffraction data, including the sites of hydrogen atoms.

The crystal structure of $\mathrm{Ce}\left(\mathrm{B}_{4} \mathrm{O}_{6}(\mathrm{OH})_{2}\right) \mathrm{Cl}$ is characterized as a layered strcuture of polyborate sheets parallel to $(001)($ Fig. $1 \& 2)$. In the structure boron atoms have two types of polyhedral coordinations. One is 3-coordinated by oxygen atoms, forming a triangular planar $\left[\mathrm{BO}_{3}\right]$ group. The other is 4-coordinated to three O -atoms and one hydroxyl group to form a $\left[\mathrm{BO}_{3}(\mathrm{OH})\right]$ tetrahedron (Fig. 3). Both $\left[\mathrm{BO}_{3}\right]$ group and $\left[\mathrm{BO}_{3}(\mathrm{OH})\right]$ polyhedron link to three neighbouring borate groups via their common O-corners except for OH terminals. Two $[\mathrm{BO} 3(\mathrm{OH})]$ tetrahedra and two triangular planar $\left[\mathrm{BO}_{3}\right]$ groups compose a borate tetramer as a fundamental building block (FBB) (Fig. 2) (Burns et al., 1995). The FBBs share their common oxygen vertices to form a zigzag borate chain running along the [$\overline{110]}$ direction. The zigzag chains are further interconnected with each other by sharing their common O-corners, resulting in a two-dimensional layer with 9-membered rings within the layer. The 9 -membered ring has a nearly equilateral (about $7.00 \AA$) triangular motif (Fig. 2). The Ce atoms just reside at the center of 9 -membered rings and adopt a 10-coordination with the surrounding eight oxygen and two chlorine atoms, forming a 1-6-3 crown-shaped polyhedron (Fig. 2). The two-dimensional layers stack along the [001] direction and are linked by Ce and Cl atoms as well as hydrogen bonds to form the three-dimensional crystal structure (Fig. 1). It is interesting that all boron and oxygen atoms (except for OH terminals) lying in the nearly planar sheets of polyborates lead to their isotropic atomic parameters significantly smaller than as-expected usually. For example, the isotropic atomic parameters of boron atoms are distributed in the range of 0.0062 (10) to 0.0085 (10) \AA^{2}, significantly smaller than that of chlorine atom $\left(0.0130(2) \AA^{2}\right)$. This may give a hint that the atomic displacement parameters correlate not only with their atomic masses but with their coordination environments also. However the standard uncertainties of atomic displacement parameters do have close correlation with their atomic masses of individual elements. As-observed in the title compound, standard uncertainties of atomic displacement parameters of all atoms distribute as-expected in the sequence of $\mathrm{Ce}, \mathrm{Cl}, \mathrm{O}$, B and H , increasing while their atomic masses decrease.

Experimental

The title compound, $\mathrm{Ce}\left(\mathrm{B}_{4} \mathrm{O}_{6}(\mathrm{OH})_{2}\right) \mathrm{Cl}$ was synthesized by using a hydrothermal method during our systematically exploiting rare earth borates (Sun, Zhou et al., 2010). Typically, a mixture of $\mathrm{Ce}_{2} \mathrm{O}_{3}(0.33 \mathrm{~g}), \mathrm{CrCl}_{3} .6 \mathrm{H}_{2} \mathrm{O}(0.80 \mathrm{~g}), \mathrm{H}_{3} \mathrm{BO}_{3}(2.00$

supplementary materials

g) and 2 ml distilled water with molar ratio of $\mathrm{Ce}: \mathrm{Cl}: \mathrm{B}=1: 9: 32$ was prepared, and transferred into a Teflon-lined stain-less-steel autoclave (30 ml in volume), then heated to and kept at 468 K for three days. Transparent, colorless crystals of the title compound were obtained by filtration, rinsed with distilled water several times, and dried in desiccators. Optical examination and powder X-ray diffraction (PXRD) analyses were used to identify the phases of the solid products.

Refinement

The hydrogen positions were obtained from the difference Fourier map and refined via fixing the bond distance of $d(\mathrm{OH})$ $=0.82(2) \AA$ with the donator of coordinated oxygen atoms. Moreover a common variable was set for the isotropic atomic displacement parameters of all hydrogen atoms during the refinement.

Figures

Fig. 1. Crystal structure of $\mathrm{Ce}\left(\mathrm{B}_{4} \mathrm{O}_{6}(\mathrm{OH})_{2}\right) \mathrm{Cl}$. $\left(\left[\mathrm{BO}_{4}\right]\right.$ drawn in red tetrahedra; $\left[\mathrm{BO}_{3}\right]$ in blue triangular groups; Ce in black spheres; Cl in green spheres; H in small black balls).

Fig. 2. Left: a two-dimensional sheet with 9-membered rings, the fundamental building block (FBB) marked by a dash-line ellipse; Right upper: a 9-membered ring with a nearly equilateral triangular motif; Right down: coordination environment of Ce in a 1-6-3 crown-shaped polyhedron.

Fig. 3. Coordination environment of metal atoms, with displacement ellipsoids drawn at the 50% probability level (symmetry codes: (vi) $x-1 / 2, y-1 / 2, z$; (vii) $x-1, y, z$; (viii) $x+1 / 2, y-1 /$ $2, z$)

Cerium(III) dihydroxidohexaoxidotetraborate chloride

Crystal data

$\mathrm{Ce}\left[\mathrm{B}_{4} \mathrm{O}_{6}(\mathrm{OH})_{2}\right] \mathrm{Cl}$

$$
F(000)=644
$$

$M_{r}=348.83$
Monoclinic, $C c$
Hall symbol: C - 2 yc
$a=6.5169$ (11) \AA
$b=11.245$ (2) \AA
$c=9.7575(17) \AA$
$\beta=105.284(3)^{\circ}$
$D_{\mathrm{x}}=3.359 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 2825 reflections
$\theta=3.6-28.0^{\circ}$
$\mu=7.00 \mathrm{~mm}^{-1}$
$T=295 \mathrm{~K}$
$V=689.8(2) \AA^{3}$
Prism, colorless
$0.16 \times 0.07 \times 0.03 \mathrm{~mm}$
$Z=4$

Data collection

Bruker SMART APEX CCD area-detector diffractometer
Radiation source: fine-focus sealed tube graphite
1800 images $, \varphi=0,90,180^{\circ}, \chi=54.74^{\circ}, \Delta \omega=0.3^{\circ}$,
Exp time: 15 s. scans
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
$T_{\text {min }}=0.401, T_{\text {max }}=0.818$
2825 measured reflections
1532 independent reflections
1523 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.022$
$\theta_{\text {max }}=28.0^{\circ}, \theta_{\text {min }}=3.6^{\circ}$
$h=-8 \rightarrow 8$
$k=-14 \rightarrow 14$
$l=-12 \rightarrow 12$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.020$
$w R\left(F^{2}\right)=0.051$
$S=1.00$
1532 reflections
134 parameters
10 restraints
Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map Hydrogen site location: difference Fourier map
All H -atom parameters refined
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0285 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\max }=0.53 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-1.64$ e \AA^{-3}
Absolute structure: Flack (1983), 716 Friedel pairs
Flack parameter: 0.034 (19)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
Ce1	$0.98063(4)$	$0.706775(17)$	$0.56430(4)$	$0.00585(8)$
C11	$0.6202(2)$	$0.82445(12)$	$0.37031(14)$	$0.0130(2)$
B1	$0.1685(9)$	$0.4466(5)$	$0.6439(6)$	$0.0073(10)$
B2	$0.8287(9)$	$0.4064(5)$	$0.6939(6)$	$0.0085(10)$
B3	$0.5112(9)$	$0.5338(5)$	$0.6256(6)$	$0.0068(10)$

B4	$0.5809(9)$	$0.7447(5)$	$0.7169(6)$	$0.0062(10)$
O1	$0.9639(5)$	$0.4852(3)$	$0.6324(3)$	$0.0076(7)$
O2	$0.7362(6)$	$0.8358(3)$	$0.6858(4)$	$0.0086(7)$
O3	$0.6294(6)$	$0.6361(3)$	$0.6426(4)$	$0.0093(7)$
O4	$0.3652(6)$	$0.7819(3)$	$0.6635(4)$	$0.0068(7)$
O5	$0.2933(6)$	$0.5383(3)$	$0.6124(4)$	$0.0087(7)$
O6	$0.6027(6)$	$0.4259(3)$	$0.6207(4)$	$0.0086(7)$
O7	$0.6335(7)$	$0.7247(3)$	$0.8706(4)$	$0.0116(7)$
O8	$0.8688(6)$	$0.4269(3)$	$0.8477(4)$	$0.0101(7)$
H1	$0.894(13)$	$0.495(3)$	$0.876(7)$	$0.04(2)^{*}$
H2	$0.731(13)$	$0.706(6)$	$0.940(7)$	$0.04(2)^{*}$

Atomic displacement parameters $\left(\lambda^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ce1	$0.00577(12)$	$0.00558(12)$	$0.00601(12)$	$0.00003(13)$	$0.00121(8)$	$0.00002(14)$
C11	$0.0132(6)$	$0.0155(6)$	$0.0094(6)$	$0.0047(5)$	$0.0012(5)$	$-0.0001(5)$
B1	$0.004(2)$	$0.009(2)$	$0.009(3)$	$-0.0008(19)$	$0.001(2)$	$-0.002(2)$
B2	$0.009(3)$	$0.006(2)$	$0.009(3)$	$0.001(2)$	$0.002(2)$	$-0.001(2)$
B3	$0.011(3)$	$0.005(2)$	$0.005(2)$	$0.001(2)$	$0.0029(19)$	$0.0021(19)$
B4	$0.009(3)$	$0.003(2)$	$0.006(2)$	$0.003(2)$	$0.002(2)$	$-0.0001(19)$
O1	$0.0040(16)$	$0.0072(16)$	$0.0124(17)$	$0.0020(13)$	$0.0036(14)$	$0.0006(13)$
O2	$0.0079(18)$	$0.0045(16)$	$0.0131(19)$	$0.0007(14)$	$0.0025(14)$	$-0.0005(14)$
O3	$0.0083(18)$	$0.0063(15)$	$0.0145(18)$	$0.0011(14)$	$0.0055(14)$	$-0.0014(14)$
O4	$0.0061(17)$	$0.0036(16)$	$0.0105(19)$	$0.0009(12)$	$0.0015(14)$	$-0.0010(12)$
O5	$0.0046(16)$	$0.0042(15)$	$0.0180(18)$	$-0.0009(13)$	$0.0041(14)$	$0.0023(14)$
O6	$0.0027(15)$	$0.0077(14)$	$0.0138(17)$	$-0.0020(13)$	$-0.0004(13)$	$-0.0019(13)$
O7	$0.0091(19)$	$0.0155(17)$	$0.0097(19)$	$0.0059(15)$	$0.0017(15)$	$0.0023(15)$
O8	$0.0161(18)$	$0.0084(17)$	$0.0048(17)$	$-0.0029(14)$	$0.0007(14)$	$-0.0010(13)$

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{Ce} 1-\mathrm{O}^{\text {i }}$	2.480 (4)	B1-O5	1.396 (6)
Cel-O8 ${ }^{\text {ii }}$	2.539 (4)	B2-O4 $4^{\text {viii }}$	1.464 (6)
Ce1-O4 ${ }^{\text {iii }}$	2.579 (4)	B2-O8	1.472 (6)
Cel-O1	2.589 (3)	B2-O6	1.474 (6)
Cel-O6 ${ }^{\text {iv }}$	2.603 (3)	B2-O1	1.483 (7)
$\mathrm{Ce} 1-\mathrm{O} 2$	2.654 (4)	B3-O6	1.359 (6)
Ce1-O3	2.716 (4)	B3-O3	1.370 (6)
Ce1-O5 ${ }^{\text {iii }}$	2.731 (3)	B3-O5	1.392 (7)
$\mathrm{Ce} 1-\mathrm{Cl1}{ }^{\text {v }}$	2.9041 (14)	B4-O4	1.427 (6)
$\mathrm{Ce} 1-\mathrm{Cl} 1$	2.9168 (14)	B4-O7	1.465 (6)
$\mathrm{B} 1-\mathrm{O} 2{ }^{\text {vi }}$	1.349 (6)	B4-O3	1.496 (6)
$\mathrm{B} 1-\mathrm{O} 1^{\text {vii }}$	1.378 (6)	B4-O2	1.526 (7)
$\mathrm{O} 7^{\mathrm{i}}-\mathrm{Ce} 1-\mathrm{O} 8^{\mathrm{ii}}$	68.55 (12)	$\mathrm{O} 8{ }^{\mathrm{ii}}-\mathrm{Ce} 1-\mathrm{Cl1}$	73.91 (9)
$\mathrm{O} 7^{\text {i }}-\mathrm{Ce} 1-\mathrm{O} 4^{\text {iii }}$	68.81 (13)	$\mathrm{O} 4{ }^{\text {iii }}-\mathrm{Ce} 1-\mathrm{Cl} 1$	129.17 (8)

sup-4

$\mathrm{O} 8^{\mathrm{ii}}-\mathrm{Cel}-\mathrm{O} 4^{\text {iii }}$	122.93 (12)	$\mathrm{O} 1-\mathrm{Cel}-\mathrm{Cl} 1$	121.47 (8)
$\mathrm{O} 7{ }^{\mathrm{i}}-\mathrm{Ce} 1-\mathrm{O} 1$	123.18 (11)	O6 ${ }^{\text {iv }}-\mathrm{Ce} 1-\mathrm{Cl} 1$	81.76 (8)
O8ii $-\mathrm{Ce} 1-\mathrm{O} 1$	67.76 (11)	$\mathrm{O} 2-\mathrm{Ce} 1-\mathrm{Cl} 1$	64.30 (8)
$\mathrm{O} 4{ }^{\text {iiii }}-\mathrm{Ce} 1-\mathrm{O} 1$	108.75 (10)	$\mathrm{O} 3-\mathrm{Cel}-\mathrm{Cl} 1$	73.81 (8)
$\mathrm{O} 7^{\mathrm{i}}-\mathrm{Ce} 1-\mathrm{O} 6^{\text {iv }}$	72.87 (12)	$\mathrm{O} 5^{\text {iiii }}-\mathrm{Ce} 1-\mathrm{Cl} 1$	149.66 (8)
O8 $8^{\text {ii }}-\mathrm{Cel}-\mathrm{O}^{\text {iv }}$	137.83 (11)	$\mathrm{Cl1}{ }^{\text {v }}-\mathrm{Ce} 1-\mathrm{Cl} 1$	134.62 (5)
$\mathrm{O} 4{ }^{\text {iii }}-\mathrm{Ce} 1-\mathrm{O}^{\text {iv }}$	53.00 (10)	$\mathrm{Ce} 1^{\text {ix }}-\mathrm{Cll}-\mathrm{Ce} 1$	126.35 (5)
$\mathrm{O} 1-\mathrm{Ce} 1-\mathrm{O}^{\text {iv }}$	152.63 (11)	$\mathrm{O} 2{ }^{\text {vi }}-\mathrm{B} 1-\mathrm{O} 1^{\text {vii }}$	123.2 (5)
$\mathrm{O} 7^{\mathrm{i}}-\mathrm{Ce} 1-\mathrm{O} 2$	125.41 (12)	$\mathrm{O} 2{ }^{\text {vi }}-\mathrm{B} 1-\mathrm{O} 5$	125.8 (5)
$\mathrm{O} 8{ }^{\mathrm{ii}}-\mathrm{Ce} 1-\mathrm{O} 2$	128.40 (12)	$\mathrm{O} 1{ }^{\text {vii }} \mathrm{B} 1-\mathrm{O} 5$	110.9 (4)
$\mathrm{O} 4{ }^{\text {iiii }}$ - $\mathrm{Ce} 1-\mathrm{O} 2$	106.95 (11)	$\mathrm{O} 4{ }^{\text {viii }}-\mathrm{B} 2-\mathrm{O} 8$	111.2 (4)
$\mathrm{O} 1-\mathrm{Ce} 1-\mathrm{O} 2$	109.92 (11)	$\mathrm{O} 4{ }^{\text {viii }}-\mathrm{B} 2-\mathrm{O} 6$	103.8 (4)
$\mathrm{O} 6{ }^{\text {iv }}-\mathrm{Ce} 1-\mathrm{O} 2$	64.77 (11)	O8-B2-O6	110.9 (4)
$\mathrm{O} 7{ }^{\mathrm{i}}-\mathrm{Ce} 1-\mathrm{O} 3$	147.45 (13)	$\mathrm{O} 4{ }^{\text {viii }}-\mathrm{B} 2-\mathrm{O} 1$	110.1 (4)
$\mathrm{O} 8{ }^{\text {ii }}-\mathrm{Ce} 1-\mathrm{O} 3$	89.01 (12)	O8-B2-O1	110.8 (4)
$\mathrm{O} 4{ }^{\text {iii }}-\mathrm{Ce} 1-\mathrm{O} 3$	142.92 (12)	$\mathrm{O} 6-\mathrm{B} 2-\mathrm{O} 1$	109.9 (4)
$\mathrm{O} 1-\mathrm{Ce} 1-\mathrm{O} 3$	63.28 (10)	O6-B3-O3	121.1 (5)
$\mathrm{O} 6^{\text {iv }}-\mathrm{Ce} 1-\mathrm{O} 3$	116.78 (11)	O6-B3-O5	118.4 (5)
O2-Ce1-O3	52.04 (11)	O3-B3-O5	120.6 (4)
$\mathrm{O} 7^{\mathrm{i}}-\mathrm{Ce} 1-\mathrm{O} 5^{\text {iii }}$	85.14 (13)	$\mathrm{O} 4-\mathrm{B} 4-\mathrm{O} 7$	111.1 (4)
$\mathrm{O} 8^{\mathrm{ii}}-\mathrm{Ce} 1-\mathrm{O} 5^{\mathrm{iii}}$	76.69 (11)	O4-B4-O3	112.1 (4)
$\mathrm{O} 4{ }^{\text {iii }}-\mathrm{Ce} 1-\mathrm{O} 5^{\text {iii }}$	63.61 (10)	O7-B4-O3	110.4 (4)
$\mathrm{O} 1-\mathrm{Ce} 1-\mathrm{O} 5^{\text {iii }}$	50.80 (10)	$\mathrm{O} 4-\mathrm{B} 4-\mathrm{O} 2$	111.9 (4)
O6 ${ }^{\text {iv }}-\mathrm{Ce} 1-\mathrm{O} 5{ }^{\text {iii }}$	116.61 (11)	$\mathrm{O} 7-\mathrm{B} 4-\mathrm{O} 2$	108.6 (4)
$\mathrm{O} 2-\mathrm{Ce} 1-\mathrm{O} 5{ }^{\text {iii }}$	144.19 (12)	$\mathrm{O} 3-\mathrm{B} 4-\mathrm{O} 2$	102.5 (4)
$\mathrm{O} 3-\mathrm{Ce}-\mathrm{O} 5{ }^{\text {iii }}$	113.23 (11)	$\mathrm{B} 1^{\text {iiii }}-\mathrm{O} 1-\mathrm{B} 2$	116.4 (4)
$\mathrm{O} 7{ }^{\mathrm{i}}-\mathrm{Ce} 1-\mathrm{Cl1}{ }^{\text {v }}$	137.84 (10)	$\mathrm{B} 1^{\text {iv }}-\mathrm{O} 2-\mathrm{B} 4$	119.9 (4)
$\mathrm{O} 8{ }^{\mathrm{ii}}-\mathrm{Cel}-\mathrm{Cl1}^{\text {v }}$	136.70 (9)	B3-O3-B4	124.1 (4)
$\mathrm{O} 4{ }^{\text {iii }}-\mathrm{Ce} 1-\mathrm{Cl1}^{\text {v }}$	69.13 (9)	B4-O4-B2 ${ }^{\text {x }}$	113.8 (4)
$\mathrm{O} 1-\mathrm{Cel}-\mathrm{Cl1}^{\text {v }}$	69.06 (8)	B3-O5-B1	126.3 (4)
O6 ${ }^{\text {iv }}-\mathrm{Ce} 1-\mathrm{Cl}^{\text {v }}$	84.35 (8)	B3-O6-B2	120.5 (4)
$\mathrm{O} 2-\mathrm{Ce} 1-\mathrm{Cl1}^{\text {v }}$	70.67 (8)	B4-O7-H2	143 (8)
$\mathrm{O} 3-\mathrm{Ce} 1-\mathrm{Cl1}^{\text {v }}$	74.57 (8)	$\mathrm{Ce1}{ }^{\text {xi }}-\mathrm{O} 7-\mathrm{H} 2$	80 (8)
O5 $5^{\text {iii }}-\mathrm{Ce} 1-\mathrm{Cl1}^{\text {v }}$	73.87 (8)	B2-O8-H1	117 (5)
O7 ${ }^{\text {i }}$ - $\mathrm{Cel-Cl1}$	77.35 (10)	$\mathrm{Ce}{ }^{\text {xii }}-\mathrm{O} 8-\mathrm{H} 1$	107 (5)

Symmetry codes: (i) $x+1 / 2,-y+3 / 2, z-1 / 2$; (ii) $x,-y+1, z-1 / 2$; (iii) $x+1, y, z$; (iv) $x+1 / 2, y+1 / 2, z$; (v) $x+1 / 2,-y+3 / 2, z+1 / 2$; (vi) $x-1 / 2$, $y-1 / 2, z$; (vii) $x-1, y, z$; (viii) $x+1 / 2, y-1 / 2, z$; (ix) $x-1 / 2,-y+3 / 2, z-1 / 2$; (x) $x-1 / 2, y+1 / 2, z$; (xi) $x-1 / 2,-y+3 / 2, z+1 / 2$; (xii) $x,-y+1$, $z+1 / 2$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O}-\mathrm{H} 1 \cdots \mathrm{O} 1^{\mathrm{xii}}$	$0.82(2)$	$2.43(7)$	$2.859(5)$	$114(6)$

supplementary materials

$\mathrm{O} 8 — \mathrm{H} 1 \cdots \mathrm{Cl1}{ }^{\mathrm{v}}$	$0.82(2)$	$2.52(5)$	$3.219(4)$	$145(7)$
$\mathrm{O} 7 — \mathrm{H} 2 \cdots \mathrm{O}^{\mathrm{v}}$	$0.83(2)$	$2.13(6)$	$2.860(6)$	$148(10)$
$\mathrm{O} 7 — \mathrm{H} 2 \cdots \mathrm{Cl1}{ }^{\mathrm{v}}$	$0.83(2)$	$2.81(11)$	$3.220(4)$	$112(9)$
Symmetry codes: (xii) $x,-y+1, z+1 / 2 ;(\mathrm{v}) x+1 / 2,-y+3 / 2, z+1 / 2$				

Symmetry codes: (xii) $x,-y+1, z+1 / 2$; (v) $x+1 / 2,-y+3 / 2, z+1 / 2$.

Fig. 1

supplementary materials

Fig. 2

Fig. 3

